STA6349: Applied Bayesian Analysis
Spring 2025
Recall the Beta-Binomial from our previous lecture,
Beta-Binomial is from a conjugate family (i.e., the posterior is from the same model family as the prior).
Today, we will learn about other conjugate families, the Gamma-Poisson and the Normal-Normal.
Suppose we are now interested in modeling the number of spam calls we receive.
We take a guess and say that the value of \lambda that is most likely is around 5,
Why can’t we use the Beta distribution as our prior distribution?
Suppose we are now interested in modeling the number of spam calls we receive.
We take a guess and say that the value of \lambda that is most likely is around 5,
Why can’t we use the Beta distribution as our prior distribution?
Y | \lambda \sim \text{Pois}(\lambda),
f(y|\lambda) = \frac{\lambda^y e^{-\lambda}}{y!}, \ \ \ y \in \{0,1, 2, ... \}
\lambda defines the mean and the variance
Y_i|\lambda \sim \text{Pois}(\lambda)
f(y_i|\lambda) = \frac{\lambda^{y_i} e^{-\lambda}}{y_i!}
\begin{align*} f\left(\overset{\to}{y_i}|\lambda\right) &= \prod_{i=1}^n f(y_i|\lambda) \\ &= f(y_1|\lambda) \times f(y_2|\lambda) \times ... \times f(y_n|\lambda) \\ &= \frac{\lambda^{y_1}e^{-\lambda}}{y_1!} \times \frac{\lambda^{y_2}e^{-\lambda}}{y_2!} \times ... \times \frac{\lambda^{y_n}e^{-\lambda}}{y_n!} \\ &= \frac{\left( \lambda^{y_1} \lambda^{y_2} \cdot \cdot \cdot \ \lambda^{y_n} \right) \left( e^{-\lambda} e^{-\lambda} \cdot \cdot \cdot e^{-\lambda}\right)}{y_1! y_2! \cdot \cdot \cdot y_n!} \\ &= \frac{\lambda^{\sum y_i}e^{-n\lambda}}{\prod_{i=1}^n y_i !} \end{align*}
f\left(\overset{\to}{y_i}|\lambda\right) = \frac{\lambda^{\sum y_i}e^{-n\lambda}}{\prod_{i=1}^n y_i !}
\begin{align*} L\left(\lambda|\overset{\to}{y_i}\right) &= \frac{\lambda^{\sum y_i}e^{-n\lambda}}{\prod_{i=1}^n y_i !} \\ & \propto \lambda^{\sum y_i} e^{-n\lambda} \end{align*}
\lambda \sim \text{Gamma}(s, r)
f(\lambda) = \frac{r^s}{\Gamma(s)} \lambda^{s-1} e^{-r\lambda}
Let’s now tune our prior.
We are assuming \lambda \approx 5, somewhere between 2 and 7.
We know the mean of the gamma distribution,
E(\lambda) = \frac{s}{r} \approx 5 \to 5r \approx s
plot_gamma()
function to figure out what value of s and r we need.Let \lambda > 0 be an unknown rate parameter and (Y_1, Y_2, ... , Y_n) be an independent sample from the Poisson distribution.
The Gamma-Poisson Bayesian model is as follows:
\begin{align*} Y_i | \lambda &\overset{ind}\sim \text{Pois}(\lambda) \\ \lambda &\sim \text{Gamma}(s, r) \\ \lambda | \overset{\to}y &\sim \text{Gamma}\left( s + \sum y_i, r + n \right) \end{align*}
Suppose we use Gamma(10, 2) as the prior for \lambda, the daily rate of calls.
On four separate days in the second week of August (i.e., independent days), we received \overset{\to}y = (6, 2, 2, 1) calls.
Your turn! Use the plot_poisson_likelihood()
function:
lambda_upper_bound
limits the x axis – recall that \lambda \in (0, \infty)!lambda_upper_bound
’s default value is 10.We can see that the average is around 2.75.
We can also verify that –
We know our prior distribution is Gamma(10, 2) and the data distribution is Poi(2.75).
Thus, the posterior is as follows,
\begin{align*} \lambda | \overset{\to}y &\sim \text{Gamma}\left( s + \sum y_i, r + n \right) \\ &\sim \text{Gamma}\left(10 + 11, 2 + 4 \right) \\ &\sim \text{Gamma}\left(21, 6 \right) \end{align*}
plot_gamma_poisson()
function:plot_gamma_poisson()
function:As scientists learn more about brain health, the dangers of concussions are gaining greater attention.
We are interested in \mu, the average volume (cm3) of a specific part of the brain: the hippocampus.
Wikipedia tells us that among the general population of human adults, each half of the hippocampus has volume between 3.0 and 3.5 cm3.
We will take a sample of n=25 participants and update our belief.
f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ \frac{-(y-\mu)^2}{2\sigma^2} \right\}
plot_normal()
function to plot the following:
Y_i | \mu \sim N(\mu, \sigma^2)
f(\overset{\to}y | \mu) = \prod_{i=1}^n f(y_i | \mu) = \prod_{i=1}^n \frac{1}{\sqrt{2 \pi \sigma^2}} \exp \left\{ \frac{-(y_i-\mu)^2}{2\sigma^2} \right\}
L(\mu|\overset{\to}y) \propto \prod_{i=1}^n \frac{1}{\sqrt{2 \pi \sigma^2}} \exp \left\{ \frac{-(y_i-\mu)^2}{2\sigma^2} \right\} = \exp \left\{ \frac{- \sum_{i=1}^n(y_i-\mu)^2}{2\sigma^2} \right\}
Y_i | \mu \sim N(\mu, \sigma^2)
\mu \sim N(\theta, \tau^2),
f(\mu) = \frac{1}{\sqrt{2 \pi \tau^2}} \exp \left\{ \frac{-(\mu - \theta)^2}{2 \tau^2} \right\}
We can tune the hyperparameters \theta and \tau to reflect our understanding and uncertainty about the average hippocampal volume (\mu) among people with a history of concussions.
Wikipedia showed us that hippocampal volumes tend to be between 6 and 7 cm3 \to \theta=6.5.
When we set the standard deviation we can check the plausible range of values of \mu:
\theta \pm 2 \times \tau
(6.5 \pm 2 \times 0.4) = (5.7, 7.3)
Let \mu \in \mathbb{R} be an unknown mean parameter and (Y_1, Y_2, ..., Y_n) be an independent N(\mu, \sigma^2) sample where \sigma is assumed to be known.
The Normal-Normal Bayesian model is as follows:
\begin{align*} Y_i | \mu &\overset{\text{iid}} \sim N(\mu, \sigma^2) \\ \mu &\sim N(\theta, \tau^2) \\ \mu | \overset{\to}y &\sim N\left( \theta \frac{\sigma^2}{n\tau^2 + \sigma^2} + \bar{y} \frac{n\tau^2}{n\tau^2 + \sigma^2}, \frac{\tau^2 \sigma^2}{n \tau^2 + \sigma^2} \right) \end{align*}
\mu | \overset{\to}y \sim N\left( \theta \frac{\sigma^2}{n\tau^2 + \sigma^2} + \bar{y} \frac{n\tau^2}{n\tau^2 + \sigma^2}, \frac{\tau^2 \sigma^2}{n \tau^2 + \sigma^2} \right)
\mu | \overset{\to}y \sim N\left( \theta \frac{\sigma^2}{n\tau^2 + \sigma^2} + \bar{y} \frac{n\tau^2}{n\tau^2 + \sigma^2}, \frac{\tau^2 \sigma^2}{n \tau^2 + \sigma^2} \right)
\begin{align*} \frac{\sigma^2}{n\tau^2 + \sigma^2} &\to 0 \\ \frac{n\tau^2}{n\tau^2 + \sigma^2} &\to 1 \\ \frac{\tau^2 \sigma^2}{n \tau^2 + \sigma^2} &\to 0 \end{align*}
\mu | \overset{\to}y \sim N\left( \theta \frac{\sigma^2}{n\tau^2 + \sigma^2} + \bar{y} \frac{n\tau^2}{n\tau^2 + \sigma^2}, \frac{\tau^2 \sigma^2}{n \tau^2 + \sigma^2} \right)
\begin{align*} \frac{\sigma^2}{n\tau^2 + \sigma^2} &\to 0 \\ \frac{n\tau^2}{n\tau^2 + \sigma^2} &\to 1 \\ \frac{\tau^2 \sigma^2}{n \tau^2 + \sigma^2} &\to 0 \end{align*}
The posterior mean places less weight on the prior mean and more weight on the sample mean \bar{y}.
The posterior certainty about \mu increases and becomes more in sync with the data.
Let us now apply this to our example.
We have our prior model, \mu \sim N(6.5, 0.4^2).
Let’s look at the football
dataset in the bayesrules
package.
Let us now apply this to our example.
We have our prior model, \mu \sim N(6.5, 0.4^2).
Let’s look at the football
dataset in the bayesrules
package.
L(\mu|\overset{\to}y) \propto \exp \left\{ \frac{-(5.735 - \mu)^2}{2(0.5^2/25)} \right\}
\begin{align*} \mu | \overset{\to}y &\sim N\left( \theta \frac{\sigma^2}{n\tau^2 + \sigma^2} + \bar{y} \frac{n\tau^2}{n\tau^2 + \sigma^2}, \frac{\tau^2 \sigma^2}{n \tau^2 + \sigma^2} \right) \\ &\sim N\left( 6.5 \frac{0.5^2}{25 \cdot 0.4^2 + 0.5^2} + 5.735 \frac{25 \cdot 0.4^2}{25 \cdot 0.4^2 + 0.5^2}, \frac{0.4^2 \cdot 0.5^2}{25 \cdot 0.4^2 + 0.5^2} \right) \\ &\sim N(6.5 \cdot 0.0588 + 5.737 \cdot 0.9412, 0.09^2) \\ &\sim N(5.78, 0.09^2) \end{align*}
\begin{align*} \mu | \overset{\to}y &\sim N\left( 6.5 \frac{0.5^2}{25 \cdot 0.4^2 + 0.5^2} + 5.735 \frac{25 \cdot 0.4^2}{25 \cdot 0.4^2 + 0.5^2}, \frac{0.4^2 \cdot 0.5^2}{25 \cdot 0.4^2 + 0.5^2} \right) \\ &\sim N(6.5 \cdot 0.0588 + 5.737 \cdot 0.9412, 0.009^2) \end{align*}